
Dark vs. Dim Silicon and Near-Threshold Computing Extended

Results

University of Virginia Dept. of Computer Science Technical Report CS-2013-01

Liang Wang

Department of Computer Science

University of Virginia

lw2aw@virginia.edu

Kevin Skadron

Department of Computer Science

University of Virginia

skadron@cs.virginia.edu

Abstract

Due to limited scaling of supply voltage, power density is expected to grow in future technology nodes.

This increasing power density potentially limits the number of transistors switching at full speed in the

future. Near-threshold operation can increase the number of simultaneously active cores, at the expense

of much lower operating frequency (“dim silicon”). Although promising to increase overall throughput,

dim cores suffer from diminishing returns as the number of cores increases. At this point, hardware ac-

celerators become more efficient alternatives. To explore such a broad design space, we have developed

a framework called Lumos to analytically quantify the performance limits of many-core, heterogeneous

systems operating at near-threshold voltage. Lumos augments Amdahl’s Law with detailed scaling of fre-

quency and power, calibrated by circuit-level simulations using a modified Predictive Technology Model

(PTM) and factors in effects of process variations. While our results show that dim cores do indeed boost

throughput, even in the presence of process variations, significant benefits are only achieved in appli-

cations with very high parallelism or with novel architectures to mitigate variation. A more beneficial

1



and scalable approach is to use accelerators. However, reconfigurable logic that supports a variety of

accelerators is more beneficial than a dedicated, fixed-logic accelerator, unless 1) the dedicated kernel

has overwhelming coverage across applications (e.g. twice as large as the total of all others), or 2) the

speedup of the dedicated accelerator over the reconfigurable equivalent is significant (e.g. 10x-50x).

1. Introduction

Threshold voltage scales down more slowly in current and future technology nodes to keep leakage

power under control. In order to achieve fast switching speed, it is generally necessary to keep transistors

operating at a considerably higher voltage than their threshold voltage. Therefore, the dwindling scaling

on threshold voltage leads to a slower pace of supply voltage scaling. Since the switching power scales as

CV 2f , Dennard Scaling can no longer be maintained and power density keeps increasing. Furthermore,

cooling cost and on-chip power delivery implications limit the increase of a chip’s thermal design power

(TDP). As Moore’s Law continues to double transistor density across technology nodes, total power

consumption will soon exceed TDP, and if high supply voltage must be maintained, future chips will

only support a small fraction of active transistors, leaving others inactive, a phenomenon referred to as

“dark silicon” [10, 27].

Since dark silicon poses a serious challenge for conventional multi-core scaling [10], researchers have

tried different approaches to cope with dark silicon, such as “dim silicon” [15] and customized accel-

erators [24]. Dim silicon, unlike conventional designs working at nominal supply, aggressively lowers

supply voltage close to the threshold to reduce dynamic power. The saved power can be used to activate

more cores to exploit more parallelism, trading off per-core performance loss with better overall through-

put [11]. However, with near-threshold supply, dim silicon designs suffers from diminishing throughput

returns as the core number increases. On the other hand, customized accelerators are attracting more at-

tention due to their orders of magnitude higher power efficiency than general-purpose processors [5, 13].

Although accelerators are promising in improving performance with less power consumption, they are

built for specific applications, have limited utilization on general-purpose applications, and sacrifice die

2



area that could be used for more general-purpose cores. Poorly utilized die area would be very costly if

there are more efficient solutions, in terms of opportunity cost. Therefor, the utilization of each incre-

mental die area must be justified with a concomitant increase in average selling price (ASP).

To investigate the performance potential of dim cores and accelerators, we have developed a frame-

work called Lumos, which extends the well known Amdahl’s Law, and is accompanied by a statisti-

cal workload model. We investigate two types of accelerators, application-specific logic (ASIC) and

RL. When we refer to RL, we generically model both fine-grained reconfigurability such as FPGA and

coarse-grained such as Dyser [12]. We also assume the reconfiguration overhead is overwhelmed by

sufficient utilization of each single configuration. Our main conclusions are:

• Systems with dim cores achieve up to 2x throughput over conventional CMPs, but with diminish-

ing returns.

• Hardware accelerators, especially RL, are effective to further boost the performance of dim cores.

• Reconfigurable logic is preferable over ASICs on general-purpose applications, where kernel com-

monality is limited.

• A dedicated fixed logic ASIC accelerator is beneficial either when: 1) its targeted kernel has a

significant coverage (e.g. twice as large as the total of all other kernels), or 2) its speedup over RL

is significant (e.g. 10x-50x).

2. Lumos

We use aggregate throughput under physical constraints as the primary performance metric. Instead

of running extensive architectural simulation, we develop Lumos by extending the simple Amdahl’s Law

model by Hill and Marty [14] with physical scaling parameters calibrated by circuit simulations with a

modified Predictive Technology Model [4]. Systems are studied across technology nodes ranging from

45nm through 16nm. A Niagara2-like in-order core is chosen as a single-core baseline design. The

characteristics of this baseline core at 45nm are obtained from McPAT [19] and summarized in Table 1.

3



Frequency Dynamic Leakage Area

(GHz) Power (W ) Power (W ) (mm2)

4.20 6.14 1.06 7.65

Table 1. Characteristics of a single Niagara-like in-order core at 45nm, obtained from McPAT [19].

Lumos extends Amdahl’s Law with extensions of voltage-frequency scaling and power modeling,

calibrated by circuit cimulations We use a 32-bits ripple carry adder to emulate the core frequency

changes subject to various supply voltages. The adder is synthesized with a standard-cell library [16]

at 45nm. Sizes of transistors in post-synthesized netlist are scaled to other technology nodes. These

circuit netlists are then simulated using a modified version of Predictive Technology Model (PTM),

which tunes transistor models with more up-to-date parameters extracted from recent publications [4].

Libraries in each technology node are available in two variants, a high-performance process and a low-

power process. The primary difference is that low-power processes have a higher threshold, as well as a

higher nominal supply voltage, than high-performance processes for every single technology node.

2.1. Frequency Modeling and Variation

0.4 0.6 0.8 1.0
Supply voltage (V)

10-1

100

101

102

103

104

Fr
e
q
u
e
n
cy

 i
n
 l
o
g
-s

ca
le

 (
M

H
z)

Vt =0.504V

Vnom=0.7V

Normal

VarMin

(a) High-performance with Vt = 0.504V .

0.4 0.6 0.8 1.0
Supply voltage (V)

10-4

10-3

10-2

10-1

100

101

102

103

Fr
e
q
u
e
n
cy

 i
n
 l
o
g
-s

ca
le

 (
M

H
z)

Vt =0.710V

Vnom=0.9V

Normal

VarMin

(b) Low-power with Vt = 0.710V .

Figure 1. A 32bits ripple carry adder (RCA) frequency scaling at 16nm, subjecting to process variation (VarMin).
Vt is the threshold voltage, and Vnom is the nominal supply voltage.

Voltage-to-frequency scaling is modeled by interpolating empirical results from circuit simulations.

4



The switching speed of a transistor scales exponentially to the threshold voltage when it is operating

at near-threshold voltage; therefore the working frequency of a circuit in near-threshold region is ex-

tremely sensitive to the threshold voltage. To investigate the fluctuation of frequency subject to process

variations, the test circuit has been simulated with Monte-Carlo analysis, assuming a standard Gaussian

distribution with 3-σ on the threshold voltage of transistors. The results for 16nm are shown in Figure

1. For the high-performance process plotted in Figure 1a, the maximum performance penalty due to

process variations is less than 10% when the circuit is operated at higher voltages around 1V . How-

ever, when supply voltage approaches the threshold, frequency penalty increases significantly to more

than 90%, which means an order of magnitude slow down on frequency. A similar trend is observed in

Figure 1b for the low-power process, though the low-power process suffers from a larger percentage of

frequency loss than the high-performance process even at a higher supply voltage, e.g. 1V.

2.2. Power Modeling

Core power consumption is modeled as two major sources, dynamic power due to transistor switching

and static power due to leakage. Therefore, per-core power is given by

Ptotal = Pdynamic + Pleakage (1)

Generally speaking, dynamic power is given by

Pdynamic = α · Ceff · V 2
dd · f (2)

where α is the activity factor, Ceff is the effective capacitance, Vdd is supply voltage, and f is the

core running frequency. We assume a constant activity factor and effective capacitance when the core

frequency is scaled with various supply voltages. Therefore, dynamic power changes quadratically to

supply voltage and linearly to frequency. According to [3], the static power of a system is given by

Pleakage = Vdd ·N · kdesign · Îleak (3)

5



where Vdd is supply voltage, N is the number of transistors, kdesign is a device-specific constant, and

Îleak is the normalized per-transistor leakage current. We assume the normalized per-transistor leakage

current is proportional to the leakage current of a single transistor, which , according to [23], is given by

Ileak = I0 · 10
Vgs−Vt+ηVds

S ·
(
1− e−

Vds
Vth

)
(4)

where Vt is the threshold voltage, η is the drain-induced barrier lowering factor (DIBL), Vth is the

thermal voltage, and n is a process-dependent constant. The thermal voltage at room temperature is

around 28mV , which is far less than the supply voltage of interest in this project, therefore e−Vds/Vt ≈ 0.

Because the transistor is at its static state when considering the static leakage power, Vgs and Vds is

roughly proportional to the supply voltage. As a result, the above equation can be reduced to

Îleak ∝ 10
Vdd
Ŝleak (5)

where Ŝleak is the aggregate scaling coefficient derived from fitting to the simulated results.

2.3. Performance Modeling

For the aggregate throughput performance (pfs), we model it with Amdahl’s Law as shown in Equa-

tion 6

Speedup =
1

1−ρ
Sserial

+ ρ
n·Sparallel

(6)

where ρ is the parallel ratio of the studied workload, Sserial is the serial part speedup over a baseline

core, Sparallel is the per-core speedup when the system works in parallel mode, and n is the number of

active cores running in parallel. For Sserial, only one core is active. In this case, the core is boosted to

1.3x nominal supply to achieve the best single core performance, denoted as p̂f c. When the system is

in parallel mode, both n and Sparallel are determined by supply voltage. First, Lumos picks the optimal

frequency with a given supply voltage; Second, it calculates per-core power consumption including both

the switching power and the leakage power according to the frequency and the supply. Finally, the

6



number of active cores is the minimum restricted by the overall power and area budgets, which is given

by

n(v) = min(
P

p(v)
,
A

a
) (7)

where p(v) is the per-core power as a function of supply voltage, P and A are system budgets of

power and area, respectively. As a result, Equation 6 can be rewritten as

Speedup = 1

/
1− ρ
p̂f c
pf0

+
ρ

n(v) · pf(v)
pf0

(8)

where pf0 is the performance of a single baseline core, pf(v) is the per-core performance as a function

of supply voltage,

When considering process variation, a single core performance loss leads to poor throughput of a

symmetric many-core system, in which the slowest core dictates the overall performance of the whole

system. Adaptive Body Bias (ABB) is not considered here, but is important future work. However, the

worst-case variation we used here sets an upper bound on the benefits of ABB. As a result, the parallel

performance of a system is confined by the core with the worst performance, denoted as pf(v)min. As

for the power, we assume no fine-grained per-core level power management mechanisms; therefore, all

cores contribute to the total power consumption through the whole period that the system is in parallel

mode. We use the mean total power (p) to estimate the per-core power, so Equation 7 is rewritten to

n(v) = min(
P

p
,
A

a
) (9)

When considering process variations, the overall speedup in Equation 8 is rewritten to

Speedup = 1

/
1− ρ
p̂f c
pf0

+
ρ

n(v) · pf(v)min
pf0

(10)

7



2.4. Technology Modeling

Technology scaling is built based on the modified PTM discussed earlier in this section. Two types

of technology variants are investigated, a high-performance process and a low-power process. The two

processes have different nominal voltage and threshold voltage, listed in Table 2.

45nm 32nm 22nm 16nm

High Vnom 1.0 0.9 0.8 0.7

Perf. Vt 0.424 0.466 0.508 0.505

Low Vnom 1.1 1.0 0.95 0.9

Power Vt 0.622 0.647 0.707 0.710

Table 2. Nominal supply voltage (Vnom) and threshold voltage (Vt) for each PTM technology variants. Voltage
units are volt (V ).

Inter-technology scaling mainly deals with scaling ratios for the frequency, the dynamic power, and

the static power. From the circuit simulation, we compare the frequency, the dynamic power, and static

power at the nominal supply for each technology nodes. We assume cores will have the same scaling

ratio as the circuit we simulated. As shown in Table 3, the scaling factors of high-performance variants

are normalized to 45nm, while the scaling factors of low-power variants are normalized to their high-

performance counterparts.

Tech. Freq. Switch Static
(nm) Power Power

45 1.0 1.0 1.0
32 0.95 0.49 0.31
22 0.79 0.21 0.12
16 0.66 0.09 0.13

(a) HP, normalized to 45nm

Tech. Freq. Switch Static
(nm) Power Power

45 0.27 0.30 0.0084
32 0.28 0.32 0.042
22 0.26 0.34 0.23
22 0.26 0.40 0.49

(b) LP, normalized to HP counterparts

Table 3. Technology scaling for high-performance (HP) processes and low-power (LP) processes. The area scaling
is assumed to be ideal so that the area of a single core shrinks by 2x per technology node.

8



2.5. Workload Modeling

A0

A1

A2
A3

Serial

(1- )

Parallel

()

k0k1k2

c2 c1 c0

Parameters for a kernel:
1) Speedup with U-cores
2) Coverage within an app.
3) Prob. to present in an app.

*U-core 
speedup Is 

proportional 
to its area

Workload

Application

Kernel

Figure 2. Workload modeling. A workload is composed by applications. An application may have several com-
puting kernels, which can be accelerated by CMP, RL, and ASIC.

The workload model is illustrated in Fig. 2, where a workload is considered as a pool of applications.

Each single application is divided into two parts, serial and parallel. Part of an application can be also

partitioned into several computing kernels. These kernels can be accelerated by various computing units,

such as multicore, possibly dim CPU cores, RL, and customized ASIC. We model the speedup and the

power consumption of RL and customized ASIC for a given kernel by u-core parameters (η,φ). As

characterized in [5], a “u-core” is any unconventional core such as RL or customized ASIC block. η1

is the relative power efficiency to a single, basic in-order core, and φ is the relative performance. We

assume that u-cores are only used to accelerate kernels that are ideally parallelized. Therefore, we model

the relative performance of a u-core proportional to its area. We add two more parameters to model the

relationship between applications and kernels:

Presence (λ) A binary value to indicate whether or not a kernel present in an application.

Coverage (ε) The time consumption in percentage for a kernel when the whole application is running

with a single base line core.

1In the original paper of [5], µ is used to denote relative performance of u-cores. However, µ is commonly used as the
mean in statistics. Therefore, we use η as an alternative to avoid confusions.

9



To model these two parameters, We have profiled the PARSEC benchmark suite [1] using Valgrind

[22]. We use native input set for all applications except for x264, because Valgrind failed to capture

source annotations for x264. We extract top kernels for every single application. Their presences and

coverages, which are plotted in Figure 3, show trends:

Figure 3. Kernels coverage and presence. Kernels are extracted from PARSEC applications, excluding x264. The
coverage for exp, fscanf, log, and rand is averaged across their all occurrences. The coverage for application
specific is the average of all application specific kernels.

• Kernels, such as library calls, have a larger probability of presence, but a lower coverage in a

single application;

• Kernels, such as application-specific routines, have very limited presence, but a higher coverage

once they present;

• Majority of kernels are application-specific.

Besides general-purpose benchmarks suite like PARSEC, we have observed a similar trend on domain-

specific bencharmks suite such as SD-VBS [26] and Minebench [21]. Based on these observations, we

propose a statistical approach to model kernels’ speedup (η), presence (λ), and coverage (ε), which is

shown in Equation 11. 
η ∼ N (µs, σ

2
s)

λ = B(1, p) where p = PDF (η)

ε ∼ N (µc, σ
2
c )

(11)

10



The speedups (η) of kernels are modeled as following a normal distribution. Kernels, like library calls,

are mapped to medium speedup close to the mean of distribution, while application-specific kernels

are mapped to tails of the distribution. The left tail denotes application specific kernels that are hard

to accelerate, such as control-intensive ones. The right tail denotes application specific kernels that

are highly efficient on accelerators, such as compute-intensive streaming ones. The presences (λ) of

these kernels are modeled as following a Bernoulli distribution with PDF (η) as its parameter. The

coverage (ε) is modeled as following another independent normal distribution. We extract parameters

for speedups by normalizing reported values from recent publications in reconfigurable logic community.

We assume a fixed scaling ratio 5x for ASIC performance to their corresponding RL implementations.

We justify parameters for coverage with values we collected from PARSEC. Values of all parameters are

summarized in Table 4

µs RL µs ASIC σs RL σs ASIC µc σc

40x 200x 10 50 40% 10%

Table 4. Summary of statistical parameters for kernel modeling

2.6. System Configuration

The system is modeled as a symmetric multi-core system composed of in-order cores. We assume

the power and the area of the last-level cache (LLC) remains a constant ratio to the whole system.

According to [19], we take the assumption that un-core components attribute to 50% of both the total

thermal design power (TDP) and the die area; The bandwidth of the memory subsystem is assumed to

be sufficient for future technology nodes by applying advanced techniques such as 3D-stacking, optical

connection, multi-chip modules, etc. In the rest of this section, the power and the area of a system only

refer to core components.

We have modeled three systems with different configurations of power and area by extracting data

from commodity processors fabricated in 45nm. They include a small system representing desktop level

processors [6], a medium system for normal server processors [7], and a large system that represents

11



the most aggressive server throughput processors [8]. One more parameter is introduced as the power

density of a system, reflecting the maximum power allowed for a unit area. It is calculated by dividing

the area from the TDP. Detailed parameters of system configurations are summarized in Table 5.

System Area TDP P. Density # of

Type (mm2) (W ) (W/mm2)† Cores∗

small 107 33 0.308 14

medium 130 65 0.5 17

large 200 120 0.6 26
∗ Computed based on the single core area at 45nm from Table 1.
† P. density is defined as maximum power allowed for a unit area.

Table 5. System configurations. All numbers are for core components, attributed to 50% of the total TDP and the
die area.

Within an application, we assume that each kernel takes considerable amount of computation time for

a single run. Therefore, we can ignore various overhead in reconfiguring accelerators, as well as setting

up the execution context. We leave the detailed overhead modeling and the modeling of transient kernel

behaviors as future work.

2.7. Lumos Release

Lumos is composed of a set of Python scripts that read in technology specific values mentioned in

previous sections, as well as results from circuit simulations. Typically, Lumos needs a workload de-

scription as its input for analysis. This description is encoded in XML format, enumerating all applica-

tions that compose the workload. Each application is described by a parallel fraction, as well as possible

kernels with their coverages in percentage. Each kernel is described by u-core parameters mentioned

in section 2.5. We have pre-compiled a couple of descriptions for kernels and workloads following

distributions as described in section 2.5. Lumos provides APIs to generate these XML descriptions by

user-specified distribution parameters. Lumos requires the user to specify the physical constraints of

a system, such as thermal design power (TDP) and area, then define their own system organization by

12



explicitly allocating area to supported accelerators. Lumos will allocate the rest of area to conventional

cores to form a heterogeneous many-core system. When all these are ready, Lumos will apply the work-

load to the user-specified system and brute-force search system configurations to pick the one with the

best TDP-constrained performance. More details on its use can be found in Lumos’s documentation at

http://liangwang.github.com/lumos. Lumos is released under a BSD open-source license.

3. Analysis

3.1. Effectiveness of Dim Silicon with Near-threshold Operation

45 32 22 16
Technology Nodes

0

5

10

15

20

25

30

35

S
p
e
e
d
u
p
 (

n
o
rm

a
liz

e
d
) Dark Si.

Dim Si.

Dark Si.(var)

Dim Si.(var)

(a) Speedup (small)

45 32 22 16
Technology Nodes

0

20

40

60

80

100

S
y
st

e
m

 U
ti

liz
a
ti

o
n
 (
%

)

Dark Si.

Dim Si.

Dark Si.(var)

Dim Si.(var)

(b) Utilization (small)

45 32 22 16
Technology Nodes

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
p
ti

m
a
l 
su

p
p
ly

 v
o
lt

a
g
e

Dark Si.

Dim Si.

Dark Si.(var)

Dim Si.(var)

Vt

(c) Supply voltage (small)

45 32 22 16
Technology Nodes

0

10

20

30

40

50

60

70

S
p
e
e
d
u
p
 (

n
o
rm

a
liz

e
d
) Dark Si.

Dim Si.

Dark Si.(var)

Dim Si.(var)

(d) Speedup (large)

45 32 22 16
Technology Nodes

0

20

40

60

80

100

S
y
st

e
m

 U
ti

liz
a
ti

o
n
 (
%

)

Dark Si.

Dim Si.

Dark Si.(var)

Dim Si.(var)

(e) Utilization (large)

45 32 22 16
Technology Nodes

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
p
ti

m
a
l 
su

p
p
ly

 v
o
lt

a
g
e

Dark Si.

Dim Si.

Dark Si.(var)

Dim Si.(var)

Vt

(f) Supply voltage (large)

Figure 4. Dark silicon vs. dim Silicon, regarding the throughput based speedup, die utilization, and the supply
voltage with optimal throughput. Two system budgets are plotted, small and large.

Unlike dark silicon, which we define as maximizing the frequency of cores to improve the overall

throughput at the expense of potentially turning some off, dim silicon aims to maximize chip utilization

to improve overall throughput by exploiting more parallelism. Dark silicon systems apply the highest

supply voltage, which is assumed to be 1.3x the nominal supply voltage in Lumos, to cores in parallel

13

http://liangwang.github.com/lumos


mode; while dim silicon systems scale down supply and pick the optimal voltage according to the overall

throughput. The comparisons between dark silicon (dark Si.) and dim silicon (dim Si.) are shown in

Figure 4.

For performance, dim silicon beats dark silicon with up to 2X throughput improvement at 16nm.

When variation comes into play, however, both systems experience throughput loss compared to non-

variation cases respectively. Dim silicon systems suffer even more compared to dark silicon, revealing

more vulnerability of dim silicon to process variations. Dim silicon is able to utilize more cores to

achieve high utilization, up to 100% for the small system and the large system. Similarly, utilization of

dim silicon systems is sensitive to the process variation. Being aware of variation, the small system with

dim silicon sees the utilization drop to as low as 20%, quite close to the utilization obtained by dark

silicon in the same technology node.

0 50 100 150 200 250
Number of cores

0

20

40

60

80

100

120

140

S
p
e
e
d
u
p

Figure 5. The speedup of IO cores at 16nm with HP process. The system is configured with large budget of 200
mm2 in area and 120 W in power. Diminishing returns are observed starting around 50 active cores.

Although dim cores manage to deliver higher throughput, they suffer from diminishing returns as the

number of active cores increases. As shown in Figure 5, a system with large budget, which is 200 mm2

in area and 120 W in power, starts to experience diminishing performance gains when the number of

active cores pass over 50. This is the point when each core has to lower its supply voltage to stay within

system-wide power budget. Therefore, the lower per-core frequency of dim cores compromises the

speedup improvement coming from increasing cores. As a result, it is not cost effective to lower supply

voltage aggressively closing to the threshold to reach the optimal throughput. The limited speedup

14



improvement from aggressive dim cores provides an opportunity to allocate some of the die area to

more efficient customized hardwares, such as RL, and ASICs.

3.2. Dim Silicon with Reconfigurable Logic

0 10 20 30 40 50 60 70 80 90
FPGA performance on kernel

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K
e
rn

e
l 
co

v
e
ra

g
e
 (

%
)

12

16

20

24

28

32

36

40

44

O
p
ti

m
a
l 
F
P
G

A
 a

llo
a
ti

o
n
 (

%
)

(a) Optimal area allocation on RL

1%

30%

47%

11%

10%

1%

(b) Distribution

0 200 400 600 800 1000
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(c) 15% RL
0 200 400 600 800 1000

0.75

0.80

0.85

0.90

0.95

1.00

(d) 20% RL
0 200 400 600 800 1000

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(e) 25% RL
0 200 400 600 800 1000

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(f) 30% RL

Figure 6. Dim silicon plus RL. Optimal RL allocation for each application is plotted in (a), and the distribution of
these optimal allocations are illustrated with a pie chart in (b). Besides, we show performance penalties for each
application if the RL allocation is fixed across the workload, at 15%(c), 20%(d), 25%(e), 30%(f), respectively.

We start by looking at the scenario that every application in the workload has only a single kernel

with considerable amount of coverage, e.g. an application-specific kernel. To do this, we generate a

pool of kernels from a population of distribution described in Table 4, as well as applications associated

with each of generated kernels. For each application, we adopt a brute-force approach to search for the

optimal RL allocation ratio, with a step of 1% of total area budget. The results are shown in Figure

6. Despite various characteristics of each application, such as kernel speedup and coverage, a majority

15



of applications flavor RL allocations less than 30% (Figure 6a, 6b). This is because, RL with even a

relatively small allocation manage to significantly accelerate the kernel, and the application performance

is limited by the speedup dim silicon delivers on the rest part of the application, according to Amdahl’s

Law.

Considering a system with certain die area dedicated to RL, some kernels may suffer from perfor-

mance penalties when the allocation is not large enough. We plot performance of such systems relative

to the optimal speedup of each application in Figure 6c through 6f. Systems with smaller RL alloca-

tions, such as 15%, 20%, and 25%, have close-to-optimal performance for the most of applications, with

a worst case performance loss of 35% with 15% allocation. While, on the other hand, the system with

30% RL allocation only experiences less than 5% penalties for most cases, and less than 10% for the

worst-case. This indicates that the speedup is somewhat insensitive to RL allocation within a reasonable

range.

We vary statistical parameters of speedup and coverage, with five other alternatives listed in Table

6. The sensitivity study on these alternatives is summarized in Figure 7. As the coverage drops down

from high to low profile, the optimal area allocation drops down as well. This is because the lower the

coverage of a single kernel, the less significant the kernel speedup at any allocation. As the RL speedup

goes from fast to slow, the optimal area allocation goes up. This is because the less the speedup of the

RL on kernels, the more area it requires to achieve a comparable performance.

Speedup Coverage

Fast Medium Slow High Low

µ 80 40 20 0.4 0.2

σ 20 10 5 0.1 0.05

Table 6. Parameters for alternative distributions of speedup and coverage.

Then we take a look a more realistic scenario, with applications following characteristics defined by

Equation 11. We choose ten synthetic kernels with speedup performance evenly spread from µ − 3σ

16



F-H F-L M-H M-L S-H S-L
0

200

400

600

800

1000

N
u
m

b
e
r 

o
f 

A
p
p
lic

a
ti

o
n
s

< 10%
10% ~ 15%

15% ~ 20%
20% ~ 25%

25% ~ 30%
30% ~ 35%

> 35%

Figure 7. Optimal RL allocation with alternative distributions for speedup and coverage. Distributions for speedup
cover three cases from slow to fast, while distributions for coverage cover two cases from low to high. Parameters
for these distribution are detailed in Table 6.

through µ + 3σ, representing various kernel performance and kernel’s probabilities of presence in a

specific application. We refer to these kernels with number 0 through 9: the speedup of kernels goes

up from kernel 0 through kernel 9, while the probability of presence peaks at kernel 4 and 5, and is the

smallest at kernel 0 and 9 (i.e. normal distribution). We draw a sample population of 500 applications.

For each application, the sum of all kernels’ coverage follows the given coverage distribution. We use

the mean of speedups on all applications as the performance metric. We do a brute-force search to

find the optimal RL allocation. The result suggests a optimal RL allocation around 20%, in Figure 8.

A larger allocation on RL limits the number of available dim cores to accelerate the non-kernel parts

of the application, delivering worse overall performance according to Amdahl’s Law. For net speedup

comparison of RL vs. dim silicon, see Figures 10-12 in following sections.

In summary, across a range of kernel characteristics, a relative small area allocation on RL, e.g. 20%-

30%, is good enough to achieve the optimal throughput that is almost 3x larger than a non-RL system of

only dim cores.

17



0 10 20 30 40 50 60 70 80
Total ASIC allocation

40

60

80

100

120

140

160

180

S
p
e
e
d
u
p
 (

m
e
a
n
)

Figure 8. Speedup of various RL allocations. Optimal performance achieved at around 20% RL allocation.

3.3. Dim Silicon with ASICs

We use the same synthesized workload as described in the last subsection to study the performance

implications with various fixed logic ASIC accelerators for these kernels. Although specialized accel-

erators can achieve tremendous speedup for application-specific kernels, limited overall coverage of its

targeted kernel within a general-purpose workload leads to limited overall performance benefit for the

workload as a whole. However, accelerators for library call kernels tend to be more beneficial in overall

speedup of the workload due to their higher overall coverage. We plot potential allocations of 2, 3,

and 4 accelerators for library call kernels in Figure 9. As the number of accelerators increases, the best

achievable performance increases as well, from 140 to 155. With a given number of accelerators, the

0.0 0.1 0.2 0.3 0.4 0.5
Total ASIC allocation

115

120

125

130

135

140

145

150

S
p
e
e
d
u
p
 (

m
e
a
n
)

Acc4 area out of total ASIC
10%

30%

50%

70%

90%

(a) ASIC kernels of 4 and 5

0.0 0.1 0.2 0.3 0.4 0.5
Total ASIC allocation

130

135

140

145

150

155

160

S
p
e
e
d
u
p
 (

m
e
a
n
)

Acc4, 5, 6 allocation
10-30-60

10-60-30

30-10-60

30-60-10

60-30-10

60-10-30

33-33-34

(b) ASIC kernels of 4, 5, and 6

0.0 0.1 0.2 0.3 0.4 0.5
Total ASIC allocation

145

150

155

160

165

S
p
e
e
d
u
p
 (

m
e
a
n
)

Acc3, 4, 5, 6 alloc
10-30-40-20

20-30-40-10

10-40-30-20

20-40-30-10

25-25-25-25

(c) ASIC kernels of 3, 4, 5, and 6

Figure 9. Speedup of a system composed by dim silicon and ASICs. We show configurations with tow accelerators
((a), three accelerators (b), and four accelerators (c). The X-axis is the total allocation to ASIC kernels, relative to
the die area budget. The legend labels show the allocation of a kernel relative to the total ASIC allocation.

18



area allocation tends to be evenly distributed among all accelerators to achieve the best performance.

The total area allocation to all hardware accelerators is limited to less than 20%.

3.4. Dim Silicon with Accelerators(RL and ASIC) on General-Purpose workload

In the previous two subsections, we have showed the benefits of accompanying conventional but dim

cores with RL and ASIC accelerators, respectively. Both of them exhibit performance improvement

over a baseline system composed by dim cores only. However, it is not necessary to achieve a bet-

ter performance by combining both types of U-cores. As shown in Figure 10, the best performance is

achieved with RL-only system organization. This counter-intuitive result comes from two reasons: First,

we model the accelerator performance scaling proportional to its area, as well as we have a conservative

assumption on the performance ratio between ASIC and RL (see Section 3.6 for the impact of alternative

performance ratios). With these assumptions, RL will be more powerful on a kernel than the correspond-

ing ASIC implementation as long as the RL is adequately larger than the ASIC accelerators, and a large

RL allocation is justified by the high utilization achievable across multiple kernels. Consequently, the

system ends up with a RL-only configuration. Second, with general-purpose workload, the average cov-

erage of a kernel is small, due to either small coverages among applications (library-call kernels) or rare

presence (application-specific kernels). This exaggerates the cost of a single ASIC accelerator which

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Total U-Cores allocation

100

110

120

130

140

150

160

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of Total U-Core

0 (FPGA only)

10% U-Cores

30% U-Cores

50% U-Cores

70% U-Cores

90% U-Cores

Figure 10. Speedup of a system composed by dim silicon, RL and ASICs. The X-axis is the total allocation to
U-cores, including both RL and ASIC accelerators, relative to the die area budget. Legend labels indicate the
total allocation of ASIC accelerators, relative to the total U-cores allocation. We assume an evenly distributed
allocation among ASIC accelerators, since it shows the best performance in previous analysis.

19



is only helpful for a specific kernel. As a result, the RL implementation is more favorable due to its

versatility across kernels.

3.5. Benefit of ASIC Accelerators

Although RL works better with general-purpose workloads, an ASIC accelerator becomes beneficial

when its targeted kernel is common enough across applications in a workload. In order to capture this

scenario, we add one more kernel to the set of ten kernels we have used in previous analyses. The cover-

age of this new kernel is fixed across all applications. We also hold the total coverage of all other kernels.

By varying the coverage of the new kernel and all other kernels, we have generated several alternative

workloads, within which the new kernel has a considerable amount of coverage across all applications.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total U-cores allocation

100

110

120

130

140

150

160

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of total U-cores
0 (FPGA only)

10% U-cores

30% U-cores

50% U-cores

70% U-cores

90% U-cores

(a) Fixed at 20%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total U-cores allocation

60

80

100

120

140

160

180

200

220

240

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of total U-cores
0 (FPGA only)

10% U-cores

30% U-cores

50% U-cores

70% U-cores

90% U-cores

(b) Fixed at 30%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total U-cores allocation

130

140

150

160

170

180

190

200

210

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of total U-cores
0 (FPGA only)

10% U-cores

30% U-cores

50% U-cores

70% U-cores

90% U-cores

(c) fixed at 40%

Figure 11. 10% coverage for all other kernels

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total U-cores allocation

60

80

100

120

140

160

180

200

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of total U-cores
0 (FPGA only)

10% U-cores

30% U-cores

50% U-cores

70% U-cores

90% U-cores

(a) Fixed at 20%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total U-cores allocation

60

80

100

120

140

160

180

200

220

240

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of total U-cores
0 (FPGA only)

10% U-cores

30% U-cores

50% U-cores

70% U-cores

90% U-cores

(b) Fixed at 30%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total U-cores allocation

50

100

150

200

250

300

S
p
e
e
d
u
p
 (

m
e
a
n
)

Total ASIC out of total U-cores
0 (FPGA only)

10% U-cores

30% U-cores

50% U-cores

70% U-cores

90% U-cores

(c) fixed at 40%

Figure 12. 30% coverage for all other kernels

20



We show results of 10% and 30% coverage of all other kernels in Figure 11 and 12, respectively. One of

the most significant observations from these plots is that the dedicated ASIC accelerator is not beneficial

at all until its targeted kernel covers more than the total of all other kernels within an application, e.g.

in Figure 11a,11b,11c,12c. This observation is consistent with commercial MPSoC designs such as TI’s

OMAP4470 [17], which has dedicated accelerators for only image processing, video encoding/decoding,

graphics rendering, since these functions are expected to be quite common for the target mobile device

workloads.

3.6. Sensitivity on ASIC Performance Ratio

We are assuming that a fixed logic accelerator provides 5x better performance than the correspond-

ing RL accelerator. This assumption could be quite conservative, especially when the reconfiguration

overhead can not be amortized by RL’s running time of a specific kernel. Alternatively, we increase

the performance ratio to 10x and 50x, and plot the dedicated ASIC allocation for the kernel of a fixed

coverage when the system achieves its optimal performance, regarding the total coverage of all other

kernels in Figure 13a and fixed coverages of the kernel targeted by dedicated ASIC in Figure 13b.

In Figure 13a, the coverage of dedicated ASIC’s kernel is fixed at 20%, while the total coverage of

all other kernels varies from 10% through 40%. When the performance of dedicated ASIC accelerators

10 20 30 40
Total coverage of all other kernels

0

5

10

15

20

25

30

A
S
IC

 a
llo

c.
 o

u
t 

o
f 

U
-c

o
re

s 
(%

) 5x

10x

50x

(a) 20% coverage of the fixed kernel

10 20 30 40
Total coverage of the fixed kernel

0

10

20

30

40

50

A
S
IC

 a
llo

c.
 o

u
t 

o
f 

U
-c

o
re

s 
(%

) 5x

10x

50x

(b) 20% coverage of all the other kernels

Figure 13. Sensitivity study on ASIC performance ratio.

21



is merely 5x better than RL, the system ends up with zero allocation to the dedicated accelerator, unless

the coverage of its targeting kernel (20%) is larger than the total coverage of all other kernels (10%).

However, when the performance of dedicated accelerator boosts to 50x better than RL, the dedicated

accelerator will always hold its place with 10% allocation out of all u-cores area. In the case of 10x

performance ratio, dedicated accelerator is beneficial, unless the total coverage of all other kernels is

as large as 40%, overwhelming the dedicated kernel’s coverage of 20%. A similar trend is observed in

Figure 13b, where the total coverage of all other kernels is fixed at 20% and dedicated kernel’s coverage

varies from 10% through 40%: dedicated kernel is favored when there is a huge gap between either: 1)

the performance of the dedicated and the reconfigurable accelerator (e.g. 50x), or 2) the coverage of the

dedicated kernel and the total coverage of all other kernels (e.g. 2x larger).

In summary, the benefit of ASIC accelerators is quite dependent to its relative throughput to RL accel-

erators on the same kernel. With a large throughput gap (e.g. 50x), ASIC accelerators are beneficial to be

included in the optimal design, even when the targeted kernel has a limited presence across applications

(e.g. as low as 10%). Otherwise, RL is preferable, as long as reconfiguration overhead can be neglected.

3.7. Alternative Serial Cores

Although massive parallelism has been observed in several computing domains, such as high per-

formance computing, there are many applications with a limited parallel ratio. In this case, adding a

“beefy” out-of-order (O3) core is more beneficial, especially when dim cores get diminishing returns on

throughput. We extract the performance of the O3 core from SPEC2006 scores of a Core i7 processor

and calculate its power and area using McPAT, which are normalized and summarized in Table 7.

Perf. Power Area

2.2x 3.5x 3.46x

Table 7. Characteristics of an O3 core at 45nm, normalized to the in-order core at the same technology node.

We assume the same inter-technology scaling factors as we have used for in-order cores in all previous

analyses. We also assume the serial core is gated off in parallel mode to save power for throughput dim

22



45 32 22 16
Technology node

0

1

2

3

4

5
N

o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

Parallel ratio

0.1

0.5

0.9

0.95

0.99

1

(a) Large chip with area of 200mm2

45 32 22 16
Technology node

0

1

2

3

4

5

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

Parallel ratio

0.1

0.5

0.9

0.95

0.99

1

(b) Small chip with area of 107mm2

Figure 14. Relative performance by using O3 core to run the serial part of an application. System budget is large
in (a) and small in (b), as characterized in Table 5. Y-axis is the performance normalized to the system at the same
technology node, which only includes in-order cores and uses one of in-order cores as the serial core.

cores. As shown in Figure 14, even with an embarrassingly parallel application, the die area investment

on dedicated O3 core is still beneficial. In the case of ideal parallelism of 100%, the performance loss

by introducing a O3 core is around 14% at 45nm, While at 16nm, the performance loss is less than 1%,

due to diminishing performance returns from a larger number of throughput cores, and lower percentage

area impact of one O3 core.

Alternatively, the serial code can be executed by the best core selected from several out-of-order can-

didates, as proposed in [20]. In this work, Najaf et al. observed a 10% performance improvement by

selecting from two alternative out-of-order cores, compared to an optimal-in-average out-of-order core.

We model core-selectability with assumptions of 10% better performance but twice the area as an out-

of-order core. To study the potential limits, we model an alternative organization of core-selectability

with a total of three O3 cores to be selected, and assume another 5% performance boost by introducing

more selections (a total of 15% over one O3 core “group”). We use the small system budget summarized

in Table 5. As shown in Figure 15a, the original core-selectability (Sel2) shows less benefit as long as

the parallel ratio is larger than 50% at 45nm. While, at 16nm (Figure 15b), the original core-selectability

beats the conventional core with almost all parallel ratios. The core-selectability in alternative organiza-

23



tion (Sel3) delivers worse throughput at 45nm unless the application is almost serial with parallel ratio of

10%. However, when it comes to 16nm, the alternative core-selectability is better for almost all parallel

ratios. This is, again, because the number of throughput cores is so large that more in-order cores suf-

fer from diminishing performance returns. Therefore, the parallel performance penalty is limited when

trading off a couple of in-order cores for single thread performance.

0.1 0.5 0.6 0.7 0.8 0.9 0.95 0.99 1
Parallel ratio

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

O3

Sel2

Sel3

(a) 45nm

0.1 0.5 0.6 0.7 0.8 0.9 0.95 0.99 1
Parallel ratio

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
ce

O3

Sel2

Sel3

(b) 16nm

Figure 15. Performance comparison among systems implementing the serial core as an out-of-order (O3) core,
core-selectability of two O3 cores (Sel2), and core-selectability of three O3 cores (Sel3). The system budget is
small from Table 5. Y-axis is the performance normalized to the system at the corresponding technology node,
which only includes in-order cores and uses one of in-order cores as the serial core.

4. Related Work

The power issue in future technology scaling has been recognized as one of the most important design

constraints by architecture designers [20, 27]. Esmaeilzadeh et al. performed a comprehensive design

space exploration on future technology scaling with an analytical performance model in [10]. While

primarily focusing on maximizing single-core performance, they did not consider lowering supply volt-

age, and concluded that future chips would inevitably suffer from a large portion of dark silicon. In

[2], Borkar and Chien indicated potential benefits of near-threshold computing with aggressive voltage-

scaling to improve the aggregate throughput. We evaluate near-threshold in more detail with the help of

Lumos calibrated with circuit simulations. In [15], Huang et al. performed a design space exploration

24



for future technology nodes. They recommended dim silicon and briefly mentioned the possibility of

near-threshold computing. Our work exploits circuit simulation to model technology scaling and eval-

uates in detail the potential benefit of improving aggregate throughput by near-threshold computing.

Besides, there are numerous literatures studying the benefit of hardware accelerators as a response to

dark silicon. Chung et al. studied the performance potentials of GPU, FPGA and ASIC in [5], regarding

physical constraints of area, power, and memory bandwidth. Although very limited number of applica-

tions were studied in their work, our work corroborates that reconfigurable accelerators, such as FPGA,

are more competitive than dedicated ASICs. Wu and Kim did a study across several popular benchmark

suites regrading the targets to be accelerated in [28]. Their work suggested a large number of dedicated

accelerators are required to achieve a moderate speedup due to the minimal functional level commonality

in benchmark suites like SPEC2006. This is consistent with our observation that dedicated fixed logic

accelerators are less beneficial due to limited utilization across applications in a general-purpose work-

load, and the importance of efficient, reconfigurable accelerators. In [25], Tseng and Brooks build an

analytical model to study tradeoffs between latency and throughput performance under different power

budgets and workloads. However, the model lacks the support of voltage and frequency scaling, es-

pecially near threshold and the capability of hardware accelerator performance modeling, limiting the

design space explorations of future heterogeneous architectures. In [29], Zidenberg et al. propose Mul-

tiAmdahl model to study the optimal allocations to each computational units, including conventional

cores and u-cores. The MultiAmdahl model can not support voltage scaling and near threshold effects,

therefore its design space exploration capability is limited for heterogeneous systems under dark/dim

silicon projections.

There are three challenges associated with near-threshold computing (NTC). First, the switching speed

of a transistor slows due to small over-drive voltage. Second, devices are more sensitive to threshold

variation when supply voltage is close to its threshold, leading to a significant increase in performance

variations. Finally, variations in process, temperature and voltage make circuits less robust, especially

for SRAM. In addition to pointing out those issues, Dreslinski et al. surveyed various techniques to

accommodate those issues in [9]. They also mentioned the potential of NTC integration in ultra energy-

25



efficient servers to achieve high throughput. Our work studies NTC in detail with quantitative results to

show the NTC could indeed be effective in high throughput computing. But unless the impact of varia-

tion is reduced, throughput boost will only be realized with embarrassingly parallel workloads. In [18],

Krimer et al. demonstrated a near-threshold SIMD architecture with pipeline weaving for variation toler-

ance. Instead of energy-constrained throughput, our work focuses on power-constrained throughput. We

do not target any specific systems or architectures, but more generally, our work studies near-threshold

computing with systems variously configured in different technology nodes. It quantifies the potential

of near-threshold computing as well as its limitations in context of power-constrained scaling.

5. Conclusions

In this paper, we develop Lumos, a framework for exploring the performance of heterogeneous sys-

tems operating at near-threshold (e.g. with dim cores). We find that dim cores manage to provide a

moderate speedup up to 2x over conventional CMP architecture (suffering from dark silicon issue with

further technology scaling). However, the poor per-core frequency of dim cores leads to a diminish-

ing returns in throughput, creating opportunity for more efficient hardware accelerators such as RL and

ASIC. Lumos models the general-purpose workload via statistical approach. We show that RL is more

favorable with general-purpose applications, where commonality of kernels is limited. A dedicated

ASIC accelerator will not be beneficial unless the average coverage of its targeted kernel is twice as

large as that of all other kernels or its speedup over RL is significant (e.g. 10x-50x). However, it is hard

to identify common function-level hotspots in realworld applications, and this is even true with domain-

specific applications. In fact, the most important conclusion from this work is the need for efficient,

on-chip, RL resources that can be rapidly reconfigured to implement a wide variety of accelerators.

6. Acknowledgements

We thank Mircea Stan and Martha Kim for their helpful comments. This work was supported by the

SRC under GRC task 1972.001 and the NSF under grants MCDA-0903471 and CNS-0916908.

26



References

[1] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In International Conference on Parallel Architectures and Compilation Techniques, PACT ’08,

2008. 10

[2] S. Borkar and A. A. Chien. The Future of Microprocessors. Communication of the ACM, 54(5), May 2011.

24

[3] J. A. Butts and G. S. Sohi. A Static Power Model for Architects. In International Symposium on Microar-

chitecture, MICRO ’00, 2000. 5

[4] B. H. Calhoun, S. Khanna, R. Mann, and J. Wang. Sub-threshold Circuit Design with Shrinking CMOS

Devices. In International Symposium on Circuits and Systems, ISCAS ’09, March 2009. 3, 4

[5] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-Chip Heterogeneous Computing: Does the Future

Include Custom Logic, FPGAs, and GPGPUs? In International Symposium on Microarchitecture, MICRO

’10, 2010. 2, 9, 25

[6] I. Corp. Intel R© CoreTM2 Quad Processor Q9550S. http://ark.intel.com/products/40815. 11

[7] I. Corp. Intel R© Xeon R© Processor W5590. http://ark.intel.com/products/41643. 11

[8] O. Corp. Oracle SPARC T4 Processor. http://www.oracle.com/us/products/servers-

storage/servers/sparc-enterprise/t-series/sparc-t4-processor-ds-

497205.pdf. 12

[9] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-Threshold Computing:

Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits. Proceedings of the IEEE, Special

Issue on Ultra-Low Power Circuit Technology, 98(2), February 2010. 25

[10] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark Silicon and the End of

Multicore Scaling. In International Symposium on Computer Architecture, ISCA ’11, 2011. 2, 24

[11] D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy, Y. Lee, D. Kim, N. Liu,

M. Wieckowski, G. K. Chen, T. N. Mudge, D. Sylvester, and D. Blaauw. Centip3De: A 3930DMIPS/W

configurable near-threshold 3D stacked system with 64 ARM Cortex-M3 cores. In IEEE International Solid-

State Circuits Conference, ISSCC ’12, 2012. 2

27

http://ark.intel.com/products/40815
http://ark.intel.com/products/41643
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-processor-ds-497205.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-processor-ds-497205.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-processor-ds-497205.pdf


[12] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically Specialized Datapaths for Energy Efficient

Computing. In International Symposium on High Performance Computer Architecture, HPCA ’11, 2011. 3

[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and

M. Horowitz. Understanding Sources of Inefficiency in General-purpose Chips. In International Symposium

on Computer Architecture, ISCA ’10, 2010. 2

[14] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. Computer, 41(7), July 2008. 3

[15] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron. Scaling with Design Constraints: Predicting the Future

of Big Chips. IEEE Micro, 31(4), July 2011. 2, 24

[16] N. Inc. Nangate FreePDK45 Generic Open Cell Library. http://www.si2.org/openeda.si2.

org/projects/nangatelib. 4

[17] T. Inc. OMAP4470 Mobile Application Processor. http://focus.ti.com/pdfs/wtbu/

OMAP4470_07-05-v2.pdf. 21

[18] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang. Synctium: a Near-Threshold Stream Processor for Energy-

Constrained Parallel Applications. IEEE Computer Architecture Letters, 9(1), January 2010. 26

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT: An Integrated

Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures. In International

Symposium on Microarchitecture, MICRO ’09, 2009. 3, 4, 11

[20] H. H. Najaf-abadi, N. K. Choudhary, and E. Rotenberg. Core-Selectability in Chip Multiprocessors. In

International Conference on Parallel Architectures and Compilation Techniques, PACT ’09, 2009. 23, 24

[21] R. Narayanan, B. Özıs.ıyılmaz, J. Zambreno, G. Memik, and A. Choudhary. MineBench: A Benchmark Suite

for Data Mining Workloads. In IEEE International Symposium on Workload Characterization, IISWC ’06,

2006. 10

[22] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. In

Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’07, 2007. 10

[23] J. M. Rabaey, A. Chandrakasan, and B. Nikolić. Digital Integrated Circuits: A Design Perspective. Prentice

Hall, second edition, 2003. 6

28

http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://focus.ti.com/pdfs/wtbu/OMAP4470_07-05-v2.pdf
http://focus.ti.com/pdfs/wtbu/OMAP4470_07-05-v2.pdf


[24] M. B. Taylor. Is Dark Silicon Useful?: Harnessing The Four Horsemen of the Coming Dark Silicon Apoca-

lypse. In Design Automation Conference, DAC ’12, 2012. 2

[25] A. C.-N. Tseng and D. Brooks. Analytical Latency-Throughput Model of Future Power Constrained Multi-

core Processors. In Workshop on Energy-Efficient Design, WEED ’12, 2012. 25

[26] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor. SD-VBS:

The San Diego Vision Benchmark Suite. In IEEE International Symposium on Workload Characterization,

IISWC ’09, 2009. 10

[27] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B.

Taylor. Conservation Cores: Reducing the Energy of Mature Computations. In International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’10, 2010. 2, 24

[28] L. Wu and M. A. Kim. Acceleration Targets: A Study of Popular Benchmark Suites. In The First Dark

Silicon Workshop, DaSi ’12, 2012. 25

[29] T. Zidenberg, I. Keslassy, and U. Weiser. MultiAmdahl: How Should I Divide My Heterogeneous Chip?

IEEE Computer Architecture Letters, 11(2):65–68, 2012. 25

29


